9870 St Vincent Place, Glasgow, DC 45 Fr 45.

+1 800 559 6580

Механизмы рождения циклонов и торнадо

Фото

НЕКОТОРЫЕ ВОПРОСЫ ФИЗИКИ ЦИКЛОНОВ И ТОРНАДО

Перейти в оглавление раздела : * Торнадо

О рождении торнадо и его “подъёмной силе”.

Помимо загадочности своего происхождения, торнадо имеет ещё одну интригующую тайну: его “хобот” иногда способен втянуть в себя и поднять в небеса целое озеро воды. Многие думают, что эта способность обусловлена тем, что внутри хобота давление ниже, чем атмосферное. Однако высота водяного столба, соответствующая перепаду давлений в одну атмосферу, составляет около десяти метров. ФотоДаже если внутри хобота был бы сверхвысокий вакуум, перепад давлений не поднял бы воду на высоту, большую, чем эта высота водяного столба. Тем не менее, торнадо поднимает воду на километр и выше. Специалисты полагают, что всё дело в мощных восходящих потоках внутри хобота. Но эта гипотеза, на наш взгляд, тоже не выдерживает критики. Хобот, достигнув земной поверхности, не засасывает окружающий воздух, а лишь закручивает его вокруг себя; откуда же взяться восходящим потокам внутри него?

Изложим нашу точку зрения на тайны торнадо. Как показывают наблюдения, благоприятная ситуация для образования торнадо возникает тогда, когда холодное грозовое облако оказывается в тёплом сухом воздухе. При этом нередко бывает, что, ещё до зарождения хобота торнадо, само облако начинает вращаться в циклоническом направлении. Это позволяет предположить, что механизм закручивания воздуха здесь в общих чертах совпадает с вышеописанным механизмом, работающим при рождении циклона. Специфика же заключается в том, что радиальные градиенты давления и температуры возникают в компактной области и имеют значения, на много порядков большие, чем в случае циклона. Холодный и насыщенный влагой воздух опускается из грозового облака и оказывается в условиях, при которых происходит интенсивное испарение капелек воды. Это приводит к быстрому понижению температуры в области интенсивного испарения.

Так и прокладывает себе путь вниз канал пониженного давления, вокруг которого закручивается вихрь. В установившемся режиме у этого вихря имеется изменяющийся с высотой равновесный радиус (см. выше), на котором центростремительные силы уравновешиваются центробежными. Поэтому название “хобот” здесь очень удачно: торнадо представляет собой, фактически, вращающуюся трубу из сильно уплотнённого воздуха. Линейная скорость этого вращения может достигать, по оценкам, 130 м/с [4]. Как и в случае циклона, в энергию торнадо превращается не малопонятная “энергия атмосферной неустойчивости”, а тепловая энергия воздушных масс.

Каким же образом эта вращающаяся “труба” поднимает воду? Ранее мы предполагали [5], что внутри торнадо может создаваться такая геометрия пространства-времени, которая компенсирует и даже пересиливает действие местного тяготения. Однако, все наши попытки понять, каким образом может создаваться подобная геометрия, были безуспешны. Разгадка же тайны “подъёмной силы” торнадо оказалась неожиданно тривиальной – на наш взгляд, вода поднимается по внутренней поверхности хобота благодаря действию обычных центробежных сил.

В самом деле, если раскрутить стакан, частично заполненный водой, то, ввиду появления центробежных сил, поверхность воды будет представлять собой, как известно, фигуру вращения с параболической образующей, текущая высота z которой зависит от радиуса r следующим образом: z(r)-z0=w 2r2/2g , где w - угловая скорость вращения, g - ускорение свободного падения. Такая же параболическая поверхность образуется у закрученной воды внутри вертикальной вращающейся трубы, слегка погруженной в воду. Если эта труба цилиндрическая, то высота подъёма воды равна высоте, на которой параболическая образующая пересекается с вертикальными стенками трубы. Если же труба имеет конусность с расширением кверху, то ситуация иная. При подходящем соотношении параметров, параболическая поверхность, находящаяся внутри усечённой конической поверхности, может не пересекаться с последней. Такое соотношение параметров, теоретически соответствующее режиму “бесконечного подъёма” воды бесконечно высокой конусной трубой, имеет вид (при z0=0): tg a < 2w 2r0/g , (2)

где a - угол, который составляет образующая конуса с горизонтом, r0 - её радиус на нулевой высоте. В реальности высота хобота торнадо конечна, и для него характерна воронкообразная форма, с раструбом наверху; но его форму в нижней части вполне можно считать конической. Как следует из (2), критическое значение V* скорости линейного вращения, выше которого начинается режим “бесконечного подъёма”, для воды, контактирующей с нижним срезом хобота, составляет V*=(0.5× gr0× tg a )1/2. (3)

Так, при r0 = 30 м и a = 85° , критическая скорость составляет 41 м/с. Надо полагать, что для торнадо вполне по силам раскручивать воду до таких скоростей.

Следует подчеркнуть, что, с учётом вышеизложенного, хобот торнадо, расширяющийся кверху, должен поднимать воду независимо от того, в каком направлении он вращается. Это действительно подтверждается в случаях, когда огромное грозовое облако имеет несколько хоботов. При этом соседние хоботы обычно вращаются в противоположных направлениях, иначе окружающие их воздушные вихри сильно мешали бы друг другу, сталкиваясь между хоботами.

В заключение отметим, что везде выше речь шла только о воде, поднимаемой торнадо, но это было сделано ради наглядности изложения. Конечно же, торнадо способен поднимать в небеса всё, что ему удаётся удержать внутри стенок хобота при раскрутке до критической скорости.

Автор: Гришаев А.А. http://newfiz.narod.ru/tornado.html

Читать :  Механизмы рождения циклонов и торнадо

РАЗДЕЛЫ
САЙТА

Индекс цитирования