СВЕТ - как экологический фактор. Свет, экологический фактор, Ионизирующее излучение. Ультрафиолетовые лучи. фотосинтез

9870 St Vincent Place, Glasgow, DC 45 Fr 45.

+1 800 559 6580

СВЕТ - как экологический фактор

Фото

Экологические факторы

Свет как экологический фактор имеет важнейшее значение потому, что является источником энергии для процессов фотосинтеза, т. е. участвует в образовании органических веществ из неорганических составляющих. Он играет большую и разнообразную роль в различных жизненных процессах у животных, что определяется его физическими свойствами.

Строго говоря, в экологии под термином «свет» подразумевается весь диапазон солнечного излучения, представляющий собой поток энергии в пределах длин волн от 0,05 до 3000 нм и более. Этот поток радиации распадается на несколько областей, отличающихся физическими свойствами и экологическим значением для живых организмов. Границы этих областей не четки; в общем виде их можно представ следующим образом:

150—400 нм — ультрафиолетовая радиация (УФ);

400—800 нм — видимый свет (границы отличаются для раз организмов);

800—1000 нм — инфракрасная радиация (ИК).

За пределами зоны ПК-радиации располагается область так называемой дальней инфракрасной радиации — мощного фактора теплового режима среды.

БИОЛОГИЧЕСКОЕ ДЕЙСТВИЕ РАЗЛИЧНЫХ УЧАСТКОВ СПЕКТРА СОЛНЕЧНОГО ИЗЛУЧЕНИЯ

Не вся солнечная радиация достигает поверхности Земли. За пределами атмосферы перпендикулярная к солнечным лучам поверхность получает энергию порядка 2,00 кал/см2 • мин (1,39 • 103 Дж/м2). Эта величина называется солнечной постоянной; она слегка варьирует по сезонам года в соответствии с изменением удаления Земли Солнца.

При прохождении через атмосферу часть солнечной радиации рассеивается молекулами газов воздуха и водяными парами, часть отражается от облаков. Этот процесс связан и с изменением качественного состава радиации. В частности, наиболее коротковолновая часть спектра (с длиной волны примерно до 300 нм) отражается озоновым экраном.

Ионизирующее излучение. Это излучение включает космические лучи, а также естественную и искусственную радиоактивность. На поверхности Земли эта форма воздействия на организмы связана главным образом с естественным радиоактивным фоном, а в наше время — и с его резкими возрастаниями техногенного происхождения.

Биологическое действие радиации осуществляется, в основном, на субклеточном уровне (ядра, митохондрии, микросомы). Установлена зависимость этого действия от дозы облучения: при малых дозировках повреждающий эффект может сменяться стимулирующим. Известно влияние ионизирующей радиации на генетический аппарат (мутагенный эффект). Экологический аспект действия этой части спектра остается практически не изученным.

Ультрафиолетовые лучи. Наиболее коротковолновая (200—280 нм) зона этой части спектра («ультрафиолет С») активно абсорбируется кожей; по опасности УФ-С близок к ЛГ-лучам, но практически полностью поглощается озоновым экраном. Следующая зона — УФ-В, с длиной волны 280—320 нм — наиболее опасная часть спектра УФ, обладающая канцерогенным действием. Механизм этого действия неизвестен; предполагают влияние через нарушение молекулы ДНК. Кроме того, эти лучи инактивируют в коже клетки Лангерганса, отвечающие за ее иммунитет, а также активируют некоторые микроорганизмы. Последнее свойственно только этой части спектра УФ; в других длинах волн УФ губителен для микробов. Большая часть зоны УФ-Б также поглощается озоновым экраном; до поверхности Земли доходят лишь УФ-лучи с длиной волны примерно от 300 нм. Эта часть спектра обладает большой энергией и оказывает на живые организмы главным образом химическое действие. В частности, УФ-лучи стимулируют процессы клеточного синтеза. Показано, что облучение ультрафиолетом повышает продуктивность молодняка сельскохозяйственных животных.

Под действием этих лучей в организме синтезируется витамин D, регулирующий обмен Са и Р, а соответственно нормальный рост и развитие скелета. Особенно велико значение этого витамина для растущего молодняка. Поэтому многие млекопитающие, выводящие детенышей в норах, регулярно (чаще—по утрам) выносят их на освещенные солнцем места вблизи норы. Так поступают, например, лисицы и барсуки. «Солнечное купанье» свойственно и многим птицам; основная роль этой формы поведения — нормализация обмена, синтез витамина D и регуляция продукции меланина. У водоплавающих птиц витамин D синтезируется на основе жирного секрета копчиковых желез, которым они смазывают свое оперение; соскабливая длиной волны порядка 400—700 нм. Некоторые бактерии, имеющие бактериохлорофиллы, способны поглощать свет в длинноволновой части спектра (максимум в области 800—1000 нм).

Зеленый лист поглощает в среднем 75 % падающей на него лучистой энергии. Но коэффициент использования ее на фотосинтез невысок: около 10 % при низкой освещенности и лишь 1—1 % — при высокой. Остальная энергия переходит в тепловую, которая затрачивается на транспирацию и другие процессы.

Наиболее важные внешние факторы, влияющие на уровень фотосинтеза,— температура, свет, диоксид углерода и кислород. На уровне самого растения на этот процесс влияют содержание хлорофилла и воды, особенности анатомии листа, концентрация ферментов.

Зависимость фотосинтеза от температуры характеризуется кривой, на которой выделяются точки (зоны) минимума, оптимума и максимума. Минимальная температура, при которой возможен фотосинтез, видоспецифична и отражает приспособленность вида к температурным условиям среды. У многих видов она совпадает с температурой замерзания тканевых жидкостей (—1, —2°С), но у наиболее холодолюбивых форм опускается до—5... —ТС. Максимальная температура фотосинтеза в среднем на 10—12°С ниже точки тепловой смерти. Температурный максимум фотосинтеза выше у южных растений. Оптимальной температурной зоной для фотосинтеза принято считать тепловые условия, при которых фотосинтез достигает 90 % своей максимальной величины; эта зона зависит от освещенности: повышается при ее увеличении и снижается в условиях затенения. Поэтому при низкой освещенности фотосинтез идет активнее при более низких температурах, а при высокой (более 3000 лк) интенсивность этого процесса увеличивается с повышением температуры.

Освещенность в своем влиянии на фотосинтез характеризуется так называемой кривой насыщения: вначале с повышением освещенности кривая потребления СО2 резко идет вверх, затем — по достижении определенного порога освещенности — нарастание фотосинтеза снижается, кривая приобретает форму гиперболы. В этой зависимости хорошо прослеживаются закономерности экологического плана: у тенелюбивых растений насыщение наступает при меньшей освещенности, чем у светолюбивых. В темноте кривые ассимиляции переходят за нулевой уровень: выделение СО2 при дыхании не компенсируется его потреблением для фотосинтеза. Минимальное освещение, при котором поглощение диоксида углерода для фотосинтеза равно выделению его при дыхании, называют точкой компенсации; у светолюбивых растений она располагается выше, чем у тенелюбивых. Кроме того, положение этой точки зависит от концентрации СО2 и от температуры.

Диоксид углерода в процессе фотосинтеза выступает как ресурс для синтеза углеводов. Норма содержания СО2 в атмосфере составляет 0,57 мг/л. Повышение концентрации ведет к усилению фотосинтеза, но лишь до известных пределов; при концентрации 5—10 % (против нормальной — 0,03 %) фотосинтез ингибируется. В сочетании с реакцией на другие факторы колебания концентрации СО2 определяют поддержание нормального уровня фотосинтеза в разнообразных природных условиях. Такие колебания обусловлены суточным ритмом фотосинтеза, закономерными изменениями интенсивности почвенного дыхания и некоторыми другими факторами. Например, суточные колебания СО2 в густых растительных сообществах могут достигать 25 % от средних величин.

Вода, тоже участвующая в процессе фотосинтеза, редко его лимитирует. Непрямым путем, однако, недостаток воды (в частности, сезонный) может быть ограничителем. Например, в западной Австралии некоторые виды растений во время засухи снижают фотосинтез на 2/3 по сравнению с весенним периодом (В. Collier et al., 1974)

РАЗДЕЛЫ
САЙТА